Error-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion
Authors: | Franz J. Király and Louis Theran |
Proc. of: | Advances in Neural Information Processing Systems NIPS’13, 2013. |
Full text: | arXiv • URL |
We propose a general framework for reconstructing and denoising single entries of incomplete and noisy entries. We describe: effective algorithms for deciding if and entry can be reconstructed and, if so, for reconstructing and denoising it; and a priori bounds on the error of each entry, individually. In the noiseless case our algorithm is exact. For rank-one matrices, the new algorithm is fast, admits a highly-parallel implementation, and produces an error minimizing estimate that is qualitatively close to our theoretical and the state-of-the-art Nuclear Norm and OptSpace methods.