Universality theorems for inscribed polytopes and Delaunay triangulations

We prove that every primary basic semialgebraic set is homotopy equivalent to the set of inscribed realizations (up to Möbius transformation) of a polytope. If the semialgebraic set is moreover open, then, in addition, we prove that (up to homotopy) it is a retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the Mnëv universality phenomenon.

Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, our results imply that the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.