Generic rigidity of frameworks with orientation-preserving crystallographic symmetry

Authors: Justin Malestein and Louis Theran
Preprint: 1108.2518, 2011
Full text: arXiv

We extend our generic rigidity theory for periodic frameworks in the plane to frameworks with a broader class of crystallographic symmetry. Along the way we introduce a new class of combinatorial matroids and associated linear representation results that may be interesting in their own right. The same techniques immediately yield a Maxwell-Laman-type combinatorial characterization for frameworks embedded in 2-dimensional cones that arise as quotients of the plane by a finite order rotation.

Note: The content of this preprint appeared as part of “Frameworks with forced symmetry II”